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On the Contribution of Thermal Diffuse X-ray Scattering to the Integrated Bragg 
Intensities of Single Crystals 
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The effect of including first-order and second-order thermal diffuse scattering contributions on the 
theoretical treatment for integrated Bragg intensities of single clystals is given for crystals belonging 
to any crystal system and with any number of atoms per unit cell. With certain restricting approxima- 
tions and assumptions, the modified integrated intensity is found to be a product of the Bragg scat- 
tering and a factor, exp (C sin2 00/22), where C is a simple function of the X-ray wavelength, the tem- 
perature, the angular peak-width, and a quantity related to the elastic properties of the crystal. For 
cubic crystals, C is found to be approximately constant and thus confirms the result obtained by Nils- 
son (1957, Ark. Fys. 12, 247) for simple cubic crystals. The theory is applied to A1 and KC1 crystals, 
and calculated values for the ratio of uncorrected to corrected integrated Bragg intensities show rea- 
sonable agreement with some experimental values obtained using the MSssbauer effect. 

Introduction 

The thermal motion of atoms in crystals, which mod- 
ifies their X-ray scattering behaviour, has been inves- 
tigated since the earliest studies of X-ray diffraction; 
an historical review has been given by Wooster (1962). 
Laval (1939) predicted and verified that the thermal 
diffuse scattering of X-rays by crystals exhibits inten- 
sity maxima in the diffraction directions correspond- 
ing to the Bragg maxima. 

The integrated Bragg intensity is usually evaluated 
by consideration of the total X-ray energy scattered 
over a small angular range of the crystal setting on 
either side of the Bragg position, after the 'background 
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scattering' has been subtracted, as illustrated in Fig. 1. 
The background includes Compton scattering, air scat- 
tering, instrumental scattering and any contribution 
due to the relatively high-frequency 'optic modes' of 
lattice vibration. The importance of the angular-depen- 
dent thermal diffuse scattering components in, and very 
close to, the Bragg diffraction directions has recently 
been shown experimentally using the MSssbauer effect 
(O'Connor & Butt, 1963; Butt & O'Connor, 1967). 
Nilsson (1957) has theoretically considered the effect 
of the first-order diffuse scattering on the integrated 
Bragg intensities of simple cubic crystals, while Warren 
(1953) and Chipman & Paskin (1959) have considered, 
in a similar way, the effect for powdered crystals. 
Recently, Cooper & Rouse (1968) have described some 
improvements to the approximations made in the 
Nilsson (1957) treatment. 
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Fig. 1. A representat ion o f  the var ious componen t  con t r i bu t i ons  to the to ta l  scat ter ing close to the Bragg m a x i m a  d i rec t ions.  
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In the present paper, the effect of first-order and 
second-order thermal diffuse scattering contributions 
on the theoretical treatment for integrated Bragg in- 
tensities of single crystals belonging to any crystal 
system and with any number of atoms per unit cell is 
given. With certain restricting approximations and as- 
sumptions, a simplification of this expression is ob- 
tained. The theory is applied to cubic crystals, and cal- 
culated values for the ratio of uncorrected to corrected 
integrated Bragg intensities are compared with some 
experimental values obtained using the MSssbauer 
effect (Butt & O'Connor, 1967). 

The theory of integrated Bragg intensities, 
including the effects of first-order and second-order 

thermal diffuse X-ray scattering 

The treatment of the general theory of thermal diffuse 
scattering has been given by Cochran (1963), and by 
Cochran & Pawley (1964). If the treatment of the inte- 
grated Bragg intensities described by James (1962) is 
extended to include contributions due to first-order 
and second-order thermal diffuse scattering and the 
concept of 'Diffuse Scattering Power', D, (Ramachan- 
dran & Wooster, 1951) is introduced, the modified 
integrated Bragg intensity, 0', for any number of atoms 
in the unit cell may be written as: 

-•0 t'Oo--AO 

(Do+ 9x + 9 2 + . . . ) d O d e ,  (1) 
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Fig. 2. Part of the Ewald sphere (in two positions) differing by 
rotation of an angle, de, about an axis through the reciprocal 
lattice origin, O, and normal to the plane of the paper. The 
shaded area around the reciprocal lattice point M denotes 
the region within which the Laue interference function Jr., 
as modified by geometrical resolution effects, has appreci- 
able values. 

Substance 

Aluminum 

Potassium chloride 

Table 1. The evaluation of  2AB for A1 and KC1 
(2=0.86 A; T=290°K) 

Elastic constants (K[ABC]hk~) 
(x 1011 dyne cm -2) (x 1012dyne -1 cm2) AO 

O1 10.68 
clz 6.07 2.89 1.75 ° 
c44 2.82 

Kamm & Alers (1964) 

O1 4.03 
02 0.66 8-22 1-50 ° 
C44 0"63 

Norwood & Brbcoe (1958) 

rc22[(K'[ABC]hla) 2AB 
16 ((K[ABC]h~t)) 2 (A2) 

~0"94 0"206 

~ 1.51 0"503 
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c = the velocity of light, 
p =the polarization factor, 
Do = the 'Diffuse Scattering Power' associated with 

the Bragg scattering, 
D1 =the first-order thermal Diffuse Scattering 

Power, 
D2 =the second-order thermal Diffuse Scattering 

Power, 
dr2 --a small solid angle containing a given diffrac- 

tion direction, L M '  (Fig. 2), 
de = a  small angular change of crystal position, 

about the axis of rotation (Fig. 2), 
n =the number of atoms in the unit cell, 
fk --the atomic scattering factor of the kth atom 

at rest, 
Mk is associated with the Debye-Waller factor of 

the kth atom, 
q =the vector distance in reciprocal space of the 

lattice point to the origin, 
r(k) =the vector distance of the kth atom from the 

origin of the unit cell, 
ocz =the Laue 'interference function', 
Ej01) =the energy of the j th  mode of vibration, 
o)~(R) =the circular frequency of the j th  mode of vi- 

bration, 
S --the difference vector between the incident and 

diffracted wave-vectors of the scattered X- 
radiation, so that ISl =4~ sin 0/2, 

ej(k,R)=the polarization vector of the kth atom, vi- 
brating in the j th  mode, 

/z~ = the mass of the kth atom. 

Fig. 2 shows part of the Ewald sphere of reflexion, in 
two positions differing in orientation by a small angle, 
de, around the crystal rotation axis. The rotation axis 
passes through O and is normal to the plane contain- 
ing LOM. The shaded area represents a section of the 
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Fig.3. Comparison of theoretical and experimental variation 
of loge (#'/e) with sin / 0o/2 z. 

spherical volume (see Discussion) of reciprocal space 
over which the Laue interference function, J z ,  is con- 
sidered to result in a measurable contribution to the 
Bragg intensity (James, 1962). M is the reciprocal lat- 
tice point and LO is the direction of the incident X-ray 
beam. The total scattering entering the solid angle dr2, 
containing the direction of diffraction, LM' ,  consists 
of the Bragg scattering together with the first-order 
and second-order thermal diffuse scattering. 

The contribution to integrated Bragg intensities due 
to the acoustic modes of vibration 

Evaluation of the integrals containing Da and D2 would 
require a detailed knowledge of the vibration modes 
for the crystal, which is not at present generally avail- 
able. Certain restricting assumptions and approxima- 
tions are, therefore, necessary and are made as follows: 

(i) As only the acoustic modes of vibration are 
important close to the reciprocal lattice point ([RI 
is small), the normalized polarization vectors, 
e~(k,R)/l/p~,-for the different atoms in the unit cell 
may be made equal. 

(ii) The atoms are in harmonic vibration and the 
temperature is such that the mean energy, (Ej(R))= 
ho~j(R). [½+ {exp (hcoj(R)/kT)- 1}-q, associated with 
each mode of vibration may be replaced by k T  (k is 
the Boltzmann constant). Dispersion effects for the 
acoustic modes of vibration may be neglected. 

(iii) The crystal may be considered as 'ideally mo- 
saic', with an approximately spherical shape, and com- 
pletely bathed in a parallel, monochromatic incident 
beam of uniform intensity. 

(iv) 'Background scattering' may be allowed for by 
the method shown in Fig. 1. 

With these approximations, and noting that df2de = 
23dr*/sin 200, equation (1) now becomes: 

0 '=0  [1 +kTqZlsphereK[ABC]nzcl/RZdr* 

+ (z3/2)k2T2q4 lsphere gt[ABC]hkl/RdT* at-. . .  ] (2) 

where the unmodified integrated Bragg intensity, 0, is 
given by: 

and 

Q= (~ez  ) 2 p23N2AvlFT12/ sin 20o 

3 cos2 (q,~j) 
K[ABC]hkt = j=IX .... 6 .  V~ ' 

3 COS 4 (q, ~j) 
K'[ABC]hgz= Z ......... ~=1 ,~2V~ 

fi =crystal density, 
~j ( j =  1,2, 3) are the amplitudes of the three acoustical 

waves having the wave vector, R, 
V~(j= 1,2,3) are their corresponding velocities. 
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Lonsdale (1942) has shown experimentally that the 
thermal diffuse scattering intensity close to a reciprocal 
lattice point is usually anisotropic. Evaluation of the 
integrals by numerical means with allowance for this 
variation, although possible in principle, would be par- 
ticularly lengthy. Average values, (K[ABC]~Ia) and 
(K'[ABC]ngt), are therefore introduced. On trans- 
forming the variables of the integrand to spherical 
polar coordinates (with M as origin) and performing 
the integrations, equation (2) becomes: 

~o'/0=[1 + 16rckT(AO/2) (K[ABC]hgz) sin 2 0o/2 z 
+ 16zc4kZTZ(K'[ABC]nkz) (AO/2) z sin 4 00//].4-JI-... ] (3a) 

which may be re-written as: 

1 (16rckT(AO/2) (K[ABC]hkt) sin z 00/22) 
o ' / e  = l + - i T  " 

1 + -~. (16rckT(AO/2) (K[ABC]h~t) sin z 0o/22) 2 

(rc22, (K'[ABC]ngt) ) ] 
× 16 ((K[ABC]nkt)) 2 + . . . .  (3b) 

Equation (3b) shows a rapidly converging series, which, 
on approximating the expression 

-16 ((K[ABC]hk~))2 ,.~ 1 

(Prasad & Wooster, 1956; Lucas, 1968), becomes the 
first three terms of the exponential series; 

0'/~ = exp (2AB sin 2 0o/22), (4) 
where 

A B = 8rck T < K[ABC]akt > AO/ 2 . 

Table 1 shows the value of 

(~22! (K'[ABC]hkl) 
i6 ((K[ABC]hkS)) -z ) 

for A1 and KC1. 
The general relationship between (K[ABC]hkt) and 

the elastic constants of a crystal is the following: 

(K[ABC]nta)= ( Z g¢gx(A-1)i~) , 
AiI~= S Cilmlcftfm , (Citmlc=cik) 

gl,g2,g3 are the direction cosines of the reciprocal lat- 
tice vector, q; 
fl,J~,J~ are the direction cosines of the wave-vector, R; 
eum~ (i , l ,m,k=l,  2 or 3) are the elastic constants of 
the crystal (Wooster, 1962). 

(Some approximate methods of estimating 

(K[ABC]h~z) , 

for cubic crystals, are compared in the Appendix.) 

Comparison of the derived expression for (0']~) with 
the experimentally measured values for some 

cubic single crystals 

Equation (4) and the approximate relationship for 
(K[ABC]nra) given in the Appendix would appear to 
suggest that, at one particular temperature, loge (0'/Q) 
should be linearly related to sin 2 0o/22 by the constant, 
2AB. In Fig. 3, the straight lines follow the calculated 
variation, while the points are experimentally obtained 
by use of the MSssbauer effect (Butt & O'Connor, 
1967). (Table 1 includes values for the appropriate 
quantities used in the calculation of 2AB.) 

Discussion 

The method used to simplify the expression for the 
modified integrated Bragg intensity involves essentially 
an averaging procedure around each lattice point and 
an integration over a spherical volume centred upon it. 
The actual size and shape of the reciprocal volume 
contributing to the total scattering will, in general, be 
much more complex (Cooper & Rouse, 1968) and will 
depend on the instrumental method by which the ex- 
perimental data is measured, the geometrical con- 
figuration of the apparatus used, and the size and shape 
of the crystal. Integrations over volumes with such 
forms usually require a numerical method for their 
evaluation and a separate application for each reflexion. 
Approximation to the spherical volume would appear 
reasonable, with the restricting assumptions made here, 
provided that the limiting apertures placed before the 
diffracted-beam detector and the angular oscillation 
range of the crystal about the Bragg angle are suf- 
ficiently large for the actual volume to be somewhat 
greater than the spherical volume. The contribution 
from the volume difference could then be considered 

Table 2. Comparison of approxhnate methods for calculating (K[ABC]hkz) 

½~¢* × 1012  ½~approx × 1012 
Substance T (°K) Nilsson (1957) (K[ABC]hk~)appro.., x 1012 

86 7"43 7.04 7"61 
KC1 280 8.21 7"89 8"34 

290 8.27 7"95 8.38 

NaC1 86 4.73 4-68 4.71 
290 5.31 5.29 5.39 

* Schwartz (1964) has pointed out a possible difficulty, in some special cases, with the method of evaluation used by Nilsson 
(1957) and has suggested an alternative method. 



B. W. LUCAS 631 

as part of the 'background' and would be deducted 
from the total scattered intensity (Fig. 1). 

For cubic crystals, the effect of neglecting thermal 
diffuse scattering contributions to the integrated inten- 
sities results in a systematic error, increasing in mag- 
nitude with diffraction angle. The overall result is to 
decrease appreciably the Debye-Waller temperature 
factors (e.g. AI,-, 11%; KC1 ~ 15 %, for the examples 
given in Table 1). 

Although the MOssbauer measurements may be sub- 
ject to some uncertainty, the reasonable agreement ob- 
tained with the predicted values for A1 and KC1 would 
appear to make further such measurements worth- 
while. 

The author gratefully acknowledges the help of Dr 
F. G. Steward for valuable discussion and kindly inter- 
est during the progress of this work. 

APPENDIX 
Approximate relationships to calculate < K[ABC]~kz> 

for cubic crystals 

(i) A direct method for calculating an approximate 
value for (K[ABC]n~t) is to find the arithmetic mean, 
with appropriate weighting, for values of K[ABC]hza 
over the (100), (110), and (111) directions, which 
results in the expression: 

( K[A BC]hla )approx 
= 1/13. (st +4(S2+S3 -Jl- S4 + S5) -t- 8S6) • 

SI=I/Cll, S2=1/C44, $3=1/(C11--C12), Sa=I/(c11+e12+ 
2c44), s5 = 1/(cn + 2Clz + 4e44), s6 = 1/(ell - el2 + C44) 
(Ramachandran & Wooster, 1951). 

(ii) Nilsson (1957) has also approximated a quantity, 
~, (it can readily be shown that K[ABC]hkz =½. x) and 
suggested the expression: 

½. bl(Cll + c12) -t- c44(2Cll + c44) 
ffappr°x= 1/105_-b~b-z-Sr ½-: (c,, + c;2)c44+ 811C~14 ' 

where 

bl=c11-Clz-2C44 , b2=c11+2c12+c44. 

Both methods of approximation are compared in 
Table 2 with the more exact evaluation of Nilsson 
(1957). 
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Thermal Etching of Dislocations in Zinc CrystaHites Grown from the Vapour 
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(Received 9 October 1968 and in revised form 22 January 1969) 

Small single crystals of zinc of 99"99% purity were grown from the vapour at a temperature slightly 
less than the melting point. The dislocation structure of these crystallites was studied by thermal 
etching, which occurs when the crystals are cooled from the growth temperature to 10 to 15 °C below 
the melting point in a few minutes. Various types of etch figures were observed and the mechanisms 
of their formation are discussed. It seems, on the basis of the available evidence, that the etch figures 
correspond to dislocations. 

Introduction 

It is known that thermal etching can be applied to re- 
veal dislocations in crystals of a number of metals and 

* Present address: Physics Department, Shyam Lal College, 
Delhi University, Shahdara, Delhi-32, India. 

alloys, with the important exceptions of Zn, Cd, Mg 
and their alloys, which have a high vapour pressure at 
high temperatures. 

It is shown here for the first time that thermal etching 
can also be applied to reveal dislocations in zinc crys- 
tals if the conditions of high vacuum and low under- 
saturation of vapour are obtained. The latter condition 


